Quote

The Crisis of Cosmology — Adam Booth | In Defence of Marx

Tags

, , , , , , , , , , , , ,

[Norm’s note: by way of comparison and contrast, might I suggest this ‘little book,’ accessible online, by Dr. Paul Marmet: Einstein’s Theory of Relativity versus Classical Mechanics   (A hard copy of this book is available.) The upshot of such a comparison would be that, indeed, as Adam Booth argues, there really is ‘a crisis of Cosmology,’ and yes, the crux of that crisis appears to be the abandonment of “the principle of mass-energy and momentum conservation,” an inescapable implication of both the Standard Model of Big Bang Cosmology (SMBBC) and — as is demonstrated by physicist Marmet — Einstein’s theory of relativity. (For a review of some empirical evidence at odds with the implications of both of these theoretical models, see Marmet’s website: Newton Physics.)]

Source: In Defence of Marx

The Crisis of Cosmology

By Adam Booth / 17 November 2014

Since the dawn of civilisation, humans have questioned the workings of the natural world around them and their own place in the Universe. Through a long process of investigation over millennia, mankind has built up an understanding of Nature and the wider cosmos. Each successive generation has expanded the horizon of our knowledge and in the process extended the boundary of the known Universe. From Ptolemy and Copernicus and through to the modern day, at every stage scientific discoveries have refined and redefined our picture of the Cosmos and our place within it.

But this journey of discovery, as with all fields of science, has not been a smooth ascent from lower to higher planes of knowledge. Rather, the process develops in a dialectical manner: in each case, an accumulation of evidence builds up that is in contradiction with the established theory; a radical change in outlook is needed to square the circle and continue taking understanding forward; and with gradual improvements in our models, we pave the way for qualitative theoretical changes, which in turn allow for further advances.

Such qualitative leaps, meanwhile, are rarely easy, but require a dramatic and revolutionary break with the established scientific paradigm, which is frequently backed up by the weight of past prejudices and the conservative interests of the status quo. Thus it was with the Copernican and Galilean revolution, which challenged the old geocentric view of the world – championed and defended vehemently by the Church – that placed the Earth at the centre of the solar system.

Now, in the 21st century, standing on the shoulders of giants such as Einstein and many others, we are able to see further than ever before. Thanks to the research of previous generations, we have developed an extraordinary understanding of the Universe and its laws – from the accurate predictions provided at the atomic and sub-atomic level by quantum mechanics, to the theories of special and general relativity and their explanations of gravity, motion, space and time.

For many years now, however, storm clouds have been amassing on the horizon. There has been an accumulation of evidence and inconsistencies that bring the current cosmic models into question. Deep and fundamental problems with the existing theories remain unanswered and years of research into new ideas have led nowhere. In short, modern cosmology is in crisis.

What do we know?

The current cosmological theories can be broadly divided in two – and then in two again. At the atomic and sub-atomic scale we have quantum mechanics and the Standard Model of Particle Physics (SMPP). At the scale of stars and galaxies – and even larger – we have Einstein’s theories of general relativity and the Standard Model of Big Bang Cosmology (SMBBC).

The SMPP describes the veritable zoo of particles that are said to be the “fundamental building blocks” of matter, consisting of small particles called leptons, such as the electron and neutrinos and a variety of larger particles called quarks, which make up protons and neutrons. In addition, the SMPP explains the behaviour of three of the four forces of nature: the electromagnetic force (electromagnetism, including light and magnetic repulsion and attraction); the weak nuclear force, (responsible for radioactive decay) and the strong nuclear force (which binds protons and neutrons). The fourth force is gravity, which causes all matter to be mutually attracted; this is significantly weaker than the other three, but operates on a vast scale and is not included in the SMPP, but is explained instead by general relativity.

The three forces within the SMPP are said to be transmitted between particles of matter by bosons – force-carrying particles – such as the photon, which carries the electromagnetic force. Furthermore, the SMPP explains that all matter has the property of mass because of its interaction with the Higgs field, via the Higgs boson – the so-called “God particle” the discovery of which was announced by scientists initially in July 2012, with later confirmation in March 2013. This was after a 40-year search, which included the construction of the Large Hadron Collider.

Quantum mechanics aims to describe the behaviour of the particles covered by the SMPP. In particular, quantum mechanics attempts to explain how such particles can be considered to behave like both particles and like waves. Light, for example, long considered an electromagnetic wave, was shown by Einstein in 1905 to be composed of massless particles, photons, with discrete values of energy proportional to the frequency of the wave. Vice-versa, the famous “double-slit experiment” showed that a stream of quantum particles, when fired at a sheet with two slits in it, would produce a pattern on photographic film normally associated with the interference produced by interacting waves.

In the quantum world, the mechanical notions of Newton’s laws of motion are replaced with probabilities. According to certain interpretations – such as that of the “Copenhagen school” – the properties of particles do not exist objectively, i.e. independently of the subjective observer, but are determined by the very act of measurement and observation itself. Particles appear and disappear; they both exist and do not exist at the same time. In place of predictability, quantum mechanics introduces only uncertainty. Where we once had cause-and-effect, suddenly we find ourselves plunged into randomness.

At the other end of the scale we have Einstein’s theory of special relativity, which explains the relative nature of space and time; that is, the way in which space curves and time slows down for matter as it approaches the speed of light, which (in a vacuum) is constant, usually denoted as c. Einstein’s theories include the important assumption that nothing in the Universe can travel faster than the speed of light.

General relativity, meanwhile, explains the gravitational force in terms of the interaction between matter and the notion of space-time. Space-time is a joint fabric of the three spatial dimensions and the dimension of time that is curved under the influence of matter. According to general relativity, the curvature of space-time, which is caused by matter, in turn affects the motion of matter. Thus we see a dynamic interaction between matter and space-time, in which one conditions the other, and from which the force of gravity emerges.

Finally, we have the Standard Model of Big Bang Cosmology (SMBBC), which ultimately attempts to explain the nature of the Universe as a whole, including its origins and its history. The fundamental basis of the SMBBC is the idea that the Universe has a beginning, and before this beginning there was nothing: neither space nor time existed. Up until 1917, when Einstein tried to apply the equations of general relativity to the Universe as a whole, the prevailing scientific opinion was that the Universe was static and eternal. Einstein’s calculations, however, showed that the Universe is dynamic; his conclusion was that the mutual force of gravity between matter would cause instability, with the Universe ultimately collapsing in on itself.

In 1931, observations by the American astronomer Edward Hubble provided evidence which suggested that galaxies, far from collapsing in, are in fact moving away from one another. The conclusion drawn from these observations was that, if everything is moving away from everything else, there must have been a point in time and space when everything was together; a point of origin for the entire Universe. This “origin” event was coined the “Big Bang”, a term first used disparagingly by the English astronomer Fred Hoyle to describe this cosmological creationism.

Together these modern theories – the SMPP, quantum mechanics, special and general relativity, and the SMBBC – form the current cosmological models used to describe the fundamental laws of the Universe. For the best part of a century, attempts have been made by theoretical physicists, including Einstein and his contemporaries, to combine all four natural forces into a single “Theory of Everything”, but to no avail. And, as quickly becomes apparent upon further description and investigation, rather than explaining the fundamentals laws, these models are themselves full of contradictions and fundamental flaws. Continue reading